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push me, pull you

CHAPTER 5 -- NEWTON'S LAWS

5.1)  Drawing a free body diagram for the force of EACH BODY in each
sketch:

a.)

b.)

Note 1:  There are two action/reaction force pairs between masses A and B:
the normal force Nbl B that A applies to B and vice versa, and the frictional force f
between the two.  Be sure you understand what is going on here!

Note 2:  Notice that the magnitude of the tension force T on mass C and
mass B is the same.
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Note 3:  The pulley mount on mass A applies a downward and to the left
force Fpulley on mass A.  As we are interested in ALL the forces acting on each
mass, that force has to be included.

c.)

d.)
Note 1:  All
the pulleys
do here is re-
direct the
line of the
tension T.

Note 2:  The
pin that
holds each
pulley in
place must
exert a force
that
effectively
keeps its
pulley from
flying off into
space.

Note 3:
There is a
force acting at the pin of each pulley to keep the pulleys from falling through the
table.



Solutions--Ch. 5  (Newton's Laws)

479

f

mg

k

with friction
   but without
      friend's force

N

F

mg

F cos 0

with friction
   with friend's force

N

0
F sin 0

fk=     Nuk

5.2)  According to Newton's Third Law:

a.)  The reaction to the force the floor applies to you is the force you
apply to the floor.

b.)  The reaction to the force a string applies to a weight is the force the
weight applies to the string.

c.)  The reaction to the force a car applies to a tree is the force the tree
applies to the car.

d.)  The reaction to the force the earth applies to the moon is the force
the moon applies to the earth.

5.3)
a.)  A free body diagram for the situation before your friend applies his

force (Part B) is shown below.  Making ax into a MAGNITUDE by
unembedding the negative sign, N.S.L. yields:

  ∑ Fx :

- fk= - max
          ⇒     - (12 nt) = - (30 kg) a
              ⇒                a = .4 m/s2.

Note 1:  Why make ax into a magnitude by
unembedding the negative sign?  In certain kinds of problems, doing so will make
life easier.  Get used to it.

Note 2:  In the next question, you are going to need µ k.  From the f.b.d.

above, N = mg = (30 kg)(9.8 m/s2) = 294 nts.  As fk = µ kN, we can write µ k = fk/N

= (12 nt)/(294 nt) = .04.

b.)  With the additional force applied by
your friend, the free body diagram looks like
the one shown to the right (note that N has
changed).  To determine N:

  
∑ Fy :

N + F sin 40o - mg = - may       (= 0 as ay = 0)

⇒      N = -F sin 40o + mg
           = - (60 nt) sin 40o + (30 kg)(9.8 m/s2)
           = 255 nts.
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    ∑ Fx :

         - µ kN + F cos 40o= - max.
     

Note 1:  In this case, I have assumed that your friend's force will not
overcome that of friction and the direction of the sled's acceleration will still be
negative (i.e., to the left).  As such, I have unembedded the negative sign in front
of the ma term.  If I am wrong, the SIGN of the calculated acceleration will be
negative.  Continuing:

  - µ kN + F cos 40o= - max

     ⇒  - (.04)(255 nt) + (60 nt)(.766) = - (30 kg) a
         ⇒                a = -1.19 m/s2.

Note 2:  The negative sign means that I've assumed the wrong direction for
a.  Evidently, your friend's force was greater than the frictional force and the
acceleration was really in the +x direction (if this ever happens to you, what I've
just said is all you will have to state to make the problem OK).

c.)  The graph of F(φ ) vs. φ  looks
something like the graph shown in
the figure to the right.  Notice that at
the minimum, the slope of F(φ ) is
ZERO (that is, dF(φ )/d φ  = 0 at that
point).  All we have to do is generate
an expression for the force as a
function of φ , then put its derivative
equal to zero and solve for φ  under
that condition.  That will produce the
angle at which the force is a minimum.

Executing that operation:

i.)  The f.b.d for the situation is
shown to the right.

ii.)  Noting that we will need to use
µ kN for the frictional force fk, we will
start with N.S.L. in the y direction to
determine N:
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∑ Fy :

    N + F sin φ- mg = may
      = 0              (as ay = 0)

   ⇒     N = -F sin φ  + mg (Equation A).

iii.)  Using N.S.L. in the x direction, we get:

  ∑ Fx :

       - µ kN + F cos φ  = max
    = 0 (as the velocity is constant).

iv.)  Substituting Equation A into this expression yields:

- µ k(-F sin φ  + mg) + F cos φ  = 0
     ⇒     F = [ µ kmg] / [µ k sin φ  + cos φ].

v.)  Given that the body is moving with a constant velocity (i.e., it
isn't accelerating), we now have a function that defines the force applied
in terms of the angle of the force.  Taking the derivative of that function
and setting it equal to zero yields an expression from which the angle of
minimum force can be determined.  Using the Chain Rule to determine
the expression, we get:

  

dF φ( )
dφ

=

d
µ kmg

µ k sin φ( ) + cos φ













dφ

          =
d µ kmg µ k sin φ( ) + cos φ[ ]−1[ ]

dφ

          = µ kmg −1( ) µ k sin φ( ) + cos φ[ ]−2
µ k cos φ( ) − sin φ[ ]

          =
−µ kmg µ k cos φ( ) − sin φ[ ]

µ k sin φ( ) + cos φ[ ]2

vi.)  As ungodly as this may look, the criterion for this expression
equaling zero is relatively simple.  All that must be true is that the
numerator equal zero.  That will be satisfied if µ k(cos φ ) - (sin φ ) = 0.

With that observation:
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     µ k(cos φ) - (sin φ) = 0,
 ⇒     µ k = [sin φ]/[cos φ] .

vii.)  As sin (φ )/cos (φ ) = tan φ , we can write:

φ  = tan-1 ( µ k).

This is the optimal angle at which the force F will be a minimum.

5.4)
a.)  A stationary elevator will feel no friction; the f.b.d. for the situation

is shown in the sketch to the right.  Using N.S.L.:

  
∑ Fy :

T - mg = ma
 = 0          (as elevator's acc. ae = 0)

     
     ⇒   T= mg

             = (400 kg)(9.8m/s2)
    = 3920 nts.

b.)  With the upward acceleration of the elevator, the frictional force
will be applied downward as shown in the f.b.d. to the right.  The
acceleration term a is a magnitude whose sign (manually placed) is positive.
N.S.L. yields:

  
∑ Fy :

        T - mg - fk = +ma
     ⇒     T= mg + fk + ma

               = (400 kg)(9.8m/s2)+(80 nt)+(400 kg)(2.8 m/s2)
      = 5120 nts.

c.)  The only difference between this problem and Part b is that the ac-
celeration is zero (constant velocity means zero acceleration).  It makes no
difference what the velocity actually is; the forces acting on the elevator are
the same as in Part b so the f.b.d. from Part b is still valid.  Using it, we get:
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∑ Fy :

T - mg - fk = ma
         ⇒    T= mg + fk + m(0)

             ⇒      = (400 kg)(9.8m/s2) + (80 nt)
    = 4000 nts.

d.)  With the downward velocity, friction is upward as shown in the
f.b.d. to the right.  N.S.L. yields:

  
∑ Fy :

T - mg + fk = -ma
     ⇒  T= mg - fk - ma

            = (400 kg)(9.8m/s2) - (80 nt) - (400 kg)(2.8 m/s2)
   = 2720 nts.

Note:  Whenever you can, make the acceleration term a a magnitude.  That
is what I've done above (the acceleration's negative sign has been unembedded).
Be careful when you do this, though.  Don't put a negative sign in front of the a,
then proceed to use -2.8 m/s2 when it comes time to put in the numbers.

e.)  Moving with a constant velocity means that the acceleration a is
zero.  Friction is still acting (upward in this case), so the f.b.d. used in Part
d is still valid (the forces haven't changed, there is just no acceleration).

  
∑ Fy :

T - mg + fk = -ma
          ⇒   T= mg - fk - m(0)

                        = (400 kg)(9.8m/s2) - (80 nt)
        = 3840 nts.

5.5)  The scale in this case is measuring the net force you apply to the scale
(or the ground).  If the acceleration is upward, this force Fscale will be greater than

mg; if downward, it will be less than mg.  To determine the acceleration direction,
we need to determine mg:

mg = (60 kg)(9.8 m/s2)
      = 588 newtons.
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As this is less than the scale reading of 860 newtons, the elevator must be
accelerating upward and the acceleration's sign must be positive.

By Newton's Third Law, the force you apply to the scale must be equal and
opposite the force the scale applies to you.  As such, using an f.b.d. and N.S.L. on
yourself (see to right) yields:

  
∑ Fy :

Fscale - mg = ma
          ⇒    a = (Fscale/m) - g

                         = (860 nt)/(60 kg) - (9.8m/s2)
         = 4.53 m/s2.

Note:  If we had assumed a downward acceleration (i.e., an
acceleration that was negative), we would have gotten a negative sign in front of
the calculated a term above.  The negative sign in an answer like that does not
identify direction.  By unembedding the sign, we have made the acceleration term
a magnitude.  As such, it should be positive.  The negative sign in front of an
answer in such instances means we have assumed the wrong direction for the
acceleration, nothing else!

5.6)
a.)  An f.b.d. for the forces on the mass is shown to

the right.  Noting that the acceleration is to the right, I
have put one coordinate axis along the horizontal.
N.S.L. in the x direction yields:

  ∑ Fx :

T sin θ  = ma
          ⇒    a = (T sin θ )/m      (Equation A).

We need to determine T to solve this.  Using N.S.L. in the y direction
yields:

  
∑ Fy :

T cos θ  - mg = may
= 0     (as ay = 0)

               ⇒   T = mg/(cos θ ).
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Re-writing, then substituting back into Equation A yields:

  a = [T] (sin θ )/m
      = [mg/(cos θ )] (sin θ )/m.

The m's cancel and (sin θ )/(cos θ ) is tan θ , so we end up with

a = g tan θ .

For our problem, the numbers yield:

a = (9.8 m/s2)(tan 26o)
   = 4.78 m/s2.

b.)  At constant velocity, there is no acceleration and, hence, no swing
observed.  The string and mass should hang completely vertical.  Note:
That is exactly what the equation in the x direction suggests.  The only time
the acceleration will equal zero in T sin θ  = ma is when θ  = 0.

Note:  One intrepid student whose father was a pilot pointed out that
airplane floors (and ceilings) are not horizontal (she observed that when she
walks to the bathroom at the rear of a plane, she always walks down hill).
In any case, that idiosyncracy isn't important here as the angle is measured
relative to the vertical.

5.7)
a.)  We are interested in finding the coefficient of

static friction between both m1 and m2 (call this µ s,1)
and between m2 and the wall (call this µ s,2), when F =

25 newtons.
--To the right is the f.b.d. for m1.  N.S.L. yields:

  ∑ Fx :

 F - N1 = m1ax
 = 0   (as ax = 0)

             ⇒     N1 = F   (equal to 25 nts).

  
∑ Fy :

 µ s,1N1 - m1g = m1a1
  = 0        (as a1 = 0).

     ⇒     µ s,1 = (m1g)/ N1
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              = [(2 kg)(9.8 m/s2)] / (25 nt)
            = .784        (note that the coefficient is unitless).

--The f.b.d. for m2 is shown to the right.  A
number of observations need to be made before
dealing with N.S.L.:

i.)  Look at m1's f.b.d. on the previous
page.  Notice that it experiences a normal
force N1 due to its being jammed up against
m2.  As such, m2 must feel a reaction force

(Newton's Third Law) of the same
magnitude (i.e., N1) in the opposite

direction.  That force has been placed on
m2's f.b.d.

ii.)  Look again at m1's f.b.d. on the previous page.  Notice that it
experiences a frictional force fs,1 due to its rubbing up against m2.  As
such, m2 must feel a reaction force of magnitude fs,1 in the direction
opposite that of the frictional force on m1.  That force has been placed
on m2's f.b.d.

iii.)  Having made those observations, N.S.L. yields:

  ∑ Fx :

 N1 - N2 = m2ax
    = 0   (as ax = 0)

                     ⇒     N1 = N2  (equal to F = 25 nts as N1 = F) .

 
  
∑ Fy :

 µ s,2N2 - µ s,1N1 - m2g = m2a2
    = 0   (as a2 = 0)

         ⇒    µ s,2 = [ µ s,1N1 + m2g ] / N2
    = [(.784)(25 nt) + (7 kg)(9.8 m/s2)] / (25 nt)
    = 3.528.
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b.)  The force F is now 20 newtons.  That means there is not enough
force associated with F to keep the bodies pinned to the wall.  That being
the case, they begin to accelerate downward.  Assume the coefficients of
kinetic friction are µ k,1 = .15 and µ k,2 = .9 respectively.

As innocuous as this scenario may seem, the problem has the potential
to be a real stinker.  Why?  Because the direction of a frictional force on a
body depends upon the direction of its slide relative to the other body.  We
don't know the acceleration of each of the bodies.  We do know that if m2
accelerates downward faster than m1, then m1's motion relative to m2 will
be upward and the frictional force on m1 will be downward.  If m2
accelerates downward more slowly than m1, then m1's motion relative to m2
will be downward and the frictional force on m1 will be upward.   Not
knowing the acceleration of either body means
we don't know which body will be moving faster
and, hence, what direction the frictional force
will be on either object.  In short, we have to do
the problem both ways to see which ends up
making sense.

We will start by assuming m1 accelerates
faster than m2.  In that case, the frictional force
on m1 will be upward and the f.b.d. for the situ-
ation will be as shown to the right.  Using N.S.L.
on m1, we get:

  ∑ Fx :

 F - N1 = m1ax
 = 0   (as ax = 0)

             ⇒           F = N1     (equal to 20 nt).

  
∑ Fy :

       µ k,1N1 - m1g = -m1a1.
     ⇒    a1 = [- µ k,1N1 + m1g]/m1

         = [-(.15)(20 nt) + (2 kg)(9.8 m/s2)] / (2 kg)
       = 8.3 m/s2.

--The f.b.d. for the forces acting on m2 are shown on the next page.
N.S.L. yields:
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  ∑ Fx :

 N1 - N2 = m2ax
   = 0   (as ax = 0)

   ⇒     N1 = N2  (equal to F = 20 nts).

  
∑ Fy :

 µ k,2N2 - µ k,1N1 - m2g = -m2a2
   ⇒    a2 = [- µ k,2N2 + µ k,1N1 + m2g] / m2

     = [-(.9)(20 nt) + (.15 kg)(20 nt) + (7 kg)(9.8 m/s2)] / (7 kg)
     = 7.66 m/s2.

Note 1:  Yes!  We've lucked out.  We assumed m1 accelerates faster than
m2, and that is just what our calculations have verified.  If we had been wrong, we
would have gotten senseless results.  As we got it right on the first try, we needn't
go further.

Note 2:  For the amusement of it, let's go further.  That is, assume that m1
accelerates more slowly than m2.  That means m1 will slide upward relative to m2
and the frictional force will be downward (this is
exactly opposite the situation we outlined above).  With
the direction of the frictional force reversed, the f.b.d.
on m1 look as shown to the right.  N.S.L. yields:

  ∑ Fx :

 F - N1 = m1ax
 = 0   (as ax = 0)

             ⇒          F = N1     (= 20 nts).

  
∑ Fy :

 - µ k,1N1 - m1g = -m1a1.
        ⇒     a1 = [ µ k,1N1 + m1g]/m1

             = [(.15)(20 nt) + (2 kg)(9.8 m/s2)] / (2 kg)
           = 11.3 m/s2.
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Yikes!  According to our calculations, block m1 is accelerating faster than

the acceleration of gravity (g = 9.8 m/s2).  That isn't possible in this situation.
Conclusion?  We made bad assumptions about the acceleration of m1 and m2.

c.)  The reason the accelerations are different?  They have different
forces acting on them!

   

5.8)
a.)  The free body

diagrams for this situation
are shown to the right.

b.)  We need the
frictional forces in both
cases, which means we
need both N1 and N2.
Using N.S.L. in the y
direction:

       
  
∑ Fy :

 N1 - m1g cos θ  = m1ay
        ⇒    N1 = m1g cos θ        (as ay = 0).

Likewise, N2 = m2gcos θ  .

--Using N.S.L. for the x-motion of m1, noting that the acceleration is in
the negative direction, relative to our coordinate axis (the body is slowing,
hence the acceleration is opposite the direction of the velocity):

  ∑ Fx :

     T - µ kN1 - m1g sin θ  = -m1a.

Substituting in for N1 and solving for m1a, we get:

 m1a = [-T + µ k(m1g cos θ ) + m1g sin θ]         (Equation A).

--To get rid of the tension term, consider the x motion of m2:
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  ∑ Fx :

     -T - µ kN2 - m2g sin θ  = -m2a.

Substituting in for N2 and solving for the tension T, we get:

   T = - µ k(m2g cos θ ) - m2g sin θ  + m2a.

Substituting the tension term into Equation A yields:

      m1a = [-(-µ k(m2g cos θ  ) - m2g sin θ+ m2a) + µ k(m1g cos θ ) + m1g sin θ].

Solving for the acceleration yields:

        a = [µ k(m2g cos θ  ) + m2g sin θ  + µ k(m1g cos θ ) + m1g sin θ]/(m1 + m2)
 = µ kg cos θ  + g sin θ .

c.)  Plugging the expression for a back into Equation A allows us to
determine T.  I'll save space by leaving the exercise to you.

5.9)  This is an important situation
because it requires you to face all the pitfalls
that can occur when doing incline-plane
problems.

We know m1 is moving down the incline.
That means m2 is moving upward.
Unfortunately, we have not been told the
direction of acceleration for either m1 or m2.
For the sake of amusement, let's assume m1's

acceleration is up the incline (i.e., it's slowing).  That will make m2's

acceleration (remember, it's physically moving upward) downward
(i.e., it's also slowing).  Consider m2's f.b.d. first.  N.S.L. allows us to
write:

  
∑ Fy :

          T - m2g = -m2a2
      ⇒   T = m2g - m2a2        (Equation 1).
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Remembering that the magnitude of m1's

acceleration is numerically equal to a2 cosθ  (this
was pointed out in the original set-up), now
consider m1's f.b.d.  N.S.L. yields:

  ∑ Fx :

T cos φ   + µ kN - m1g sin θ  = m1a1
  ⇒     T cos φ   + µ kN - m1g sin θ  = m1(a2cos θ )
(Equation 2).

At this point, we have three unknowns N, a,
and T.  To determine an expression for N, consider N.S.L. in the y direction for m1.
Doing so yields:

  
∑ Fy :

T sin φ   + N - m1g cos θ  = m1ay = 0            (as  ay = 0)
          ⇒    N = -T sin φ  + m1g cos θ                   (Equation 3)

--Note that although the problem did not ask you to do so, solving for a2 is done in
the following manner.

Plugging Equation 1 into Equation 3 yields:

N = -(m2g - m2a2) sin φ   + m1g cos θ                 (Equation 4)

Plugging Equation 1 and Equation 4 into Equation 2 yields:

         T            cos φ   + µ k                           N                            - m1g sin θ  = m1(a2cos φ)
(m2g - m2a2 ) cos φ  + µ k[-(m2g - m2a2) sin φ  + m1g cos θ - m1g sin θ= m1(a2cos φ)

Rearranging and solving for a2 yields:

  
a2 =

m2g cos φ − µ km2g sin φ + µ km1g cosθ − m1g sin θ

m1 cos φ + m2 cos φ − µ km2 sin φ
 .

Interesting Note:  There are positive and negative parts of the
denominator, but it's OK because the two amounts will never add to zero.
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5.10)  This is a circular motion
problem.  There must be a natural force
somewhere in the system that acts to
change the direction of m1's motion.
That is, there must be a gravitational or
normal or tension or friction or push-me-
pull-you force that is center-seeking.  In
this case, that force provided by the sys-
tem is the tension in the string.  The

problem proceeds:
Using N.S.L. on mass m1 (see f.b.d. to right):

  ∑ Fc :

-T = -m1ac
    ⇒   T = m1 (v2/R)

           ⇒   v = (TR/m1)1/2.

This equation has two unknowns, v and T.  To get rid of the tension term,
consider N.S.L. applied to mass m2 (see f.b.d. to right):

  ∑ Fv :

T - m2g = 0         (as ay = 0)
     ⇒   T = m2g.

Substituting back into our expression for v, we get:

 v = [TR/m1]1/2

      = [(m2g)R/m1]1/2.

This is a nice problem as it requires you to deal with more than one body.
The approach is the same as it has always been.  Do an f.b.d. for one body in the
system.  In this case, notice that the body is moving in a circular path.  As such,
orient one axis so that it is center-seeking (i.e., along the radius of the arc upon
which the bob is moving).  Use N.S.L. to generate as many equations as needed.  If
you haven't enough equations to solve for the desired unknown, pick a second
mass and repeat the approach.
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5.11)  An f.b.d. for the forces acting on the cart
when at the top of the loop is shown to the right.  N.S.L.
yields:

  ∑ Fc :

-N - mg = -m ac
        = -m (v2/R)
⇒   v = [(N + mg)R/m]1/2.

When the cart just freefalls through the top of the arc, the normal force goes to
zero.  In that case:

        v = [gR]1/2.

5.12)
a.)  To begin with, the tension vector must

have a vertical component (see f.b.d. to the right).
If it doesn't, there will be nothing to counteract
gravity and the rock must accelerate downward--
something our object is not doing.  As such, that
vertical force will ALWAYS equal mg.  BUT, if the
rock is moving fast, the angle will be small and the
vertical component will be very small in
comparison to T.  In that case, we can assume the
tension force T is wholly centripetal and r = L.  Using those assumptions:

    ∑ Fc :

T = m ac
         = m (v2/L)

 ⇒   v = [TL/m]1/2.

Putting in the numbers and using Tmax, this yields:

v = [TL/m]1/2

      = [(50 nt)(1.2 m)/(.2 kg)]1/2

      = 17.32 m/s.
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b)  Because there is centripetal motion going on here, the temptation is
to draw an f.b.d. like the one shown to the right and then sum the forces in
the center-seeking direction.  Noting that the
radius r of the body's motion is L cos θ , we
write:

       ∑ Fc :

T cos θ  = m ac
  = m [v2/r]
  = m [v2/(L cos θ )]

     ⇒   (cos θ )2= [mv2/LT].

This equation would be great if we knew the velocity and wanted the
angle (or vice versa).  Unfortunately, we know neither.  In other words, for
this particular question, summing in the center-seeking direction is going to
be no help at all (at least not initially).  With that in mind, let's use N.S.L.
in the vertical direction and pray it gives us an equation we can use.

  ∑ Fv :

T sin θ  - mg = 0      (as ay = 0)
     ⇒   sin θ  = mg / Tmax

          = (.2 kg)(9.8 m/s2) / (50 nt)
           = .039

     ⇒   θ  = 2.247o.

c.)  We now know the angle that corresponds to the velocity at which
the string will give up and break.  With that information we can use N.S.L.
in the center-seeking direction to bring the velocity term into play (that
equation was derived above--it is re-derived below for your convenience).
Doing so yields: 

       ∑ Fc :

 T cos θ  = m ac
           = m [v2/(L cos θ )]

     ⇒  v = [LT(cos θ )2/m]1/2

   = [(1.2 m) (50 nt) (cos 2.247o)2 / (.2 kg)]1/2

   = 17.3 m/s.
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Notice how close this is to the solution determined in Part a.  The rea-
son for this should be obvious.  The string-breaking velocity is high which
means the string-breaking angle is small.  Being so, the vertical tension
component (this must equal mg) will be small in comparison to the overall
tension T and the horizontal tension component will very nearly equal T.
The assumption we made in Part a was that the tension was all in the
center-seeking (horizontal) direction--in this case, that wasn't a bad
assumption to make.

d.)  For this part, we must incorporate the velocity into our analysis (we
didn't do that when we were looking for the angle in Part b; you should
understand the difference between these two situations).  Using the f.b.d.
shown in Part b-i, we can use N.S.L. to write:

  ∑ Fc :

 T cos θ  = m ac
        = m [v2/(L cos θ )]
⇒   v = [TL(cos θ )2/m]1/2      (Equation A).

In this case, we don't know T.  Looking at the vertical forces yields:

  ∑ Fv :

T sin θ  - mg = 0      (as ay = 0)
⇒   T = mg/sin θ .

Substituting T into Equation A:

  v = [T(cos θ )2L/m]1/2

    = [(mg/sin θ ) (cos θ )2L/m]1/2

    = [(g/sin θ ) (cos θ )2L]1/2

    = [g (cot θ ) (cos θ )L]1/2.

NOTE:  If you don't like the use of the cotangent function (cos/sin), forget it
and simply use the sine and cosine terms as presented.

Putting in the numbers, we get:

v = [(9.8 m/s2)(cot 30o)(cos 30o)(1.2 m)]1/2

   = 4.2 m/s.
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5.13)

a.)  The gravitational force between you and the earth, using Newton's
general gravitational expression, is:

Fg = G myoume/r2

     = (6.67x10-11 m3/kg.s2) (70 kg) (5.98x1024 kg) / (6.37x106 m)2

     = 688 nts.

Using myoug:

Fg = myoug

     = (70 kg) (9.8 m/s2)
     = 686 nts.

The discrepancy is due to round-off error.

Note:  The reason we can get away with using mg when near the earth's
surface is due to the fact that the earth's radius is so large.  That is, it really
doesn't matter whether you are on the earth's surface or 200 meters above the
earth's surface.  For all intents and purposes, the distance between you and the
center of the earth is going to be, to a very good approximation, the same.

b.)  Let's begin by determining the amount of normal
force (Nw/o c.f.) the earth must apply to you when you

stand at the poles.  The f.b.d. for the situation is shown to
the right.  Noting that there is no centripetal acceleration
at the poles (at the poles the rotational speed of the earth
is zero), ay is zero and N.S.L. yields:

  
∑ Fy :

      Nw/o c.f. - mgw/o c.f. = 0       (as ay = 0)
      ⇒    Nw/o c.f.

 = mgw/o c.f.
           = (70 kg)(9.83 m/s2)
           = 688.1 newtons.

  Note that at the equator, the earth's rotational speed is equal to the
distance a point on the equator travels in one day (i.e., the circumference =
2R = (2)(3.14)(6.37x106 m) = 4x107 m) divided by the time it takes to do the
traveling (i.e., 24 hours = 86,400 seconds), or:
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veq = d / t

      = (4x107 m ) / (86,400 sec)
      = 463.2 m/s (this is around 1000 mph).

Let's now determine the amount of normal force (Nw c.f.) the earth must
apply to you when you stand at the equator.  The f.b.d. for the situation is
shown to the right.  Noting that as
there is centripetal acceleration at
the equator (at the equator there is
rotational speed in the amount
calculated above), ay is non-zero and
N.S.L. yields:

  ∑ Fc :

          Nw c.f. - mgw/o c.f.  = -mac
         = -m(v2/R)

                    ⇒     Nw c.f. = mgw/o c.f. - m(v2/R).

Put in a different context, the normal force required at the equator will
be equal to the normal force required without centripetal force (remember,
Nw/o c.f.

 = mgw/o c.f. from above) minus the centripetal force (this will

numerically equal mv2/R) required to move you into circular motion.
Putting in the numbers yields:

 

Nw c.f. = mgw/o c.f. - m(v2/R)

= (688.1 nts) - (70 kg)[(463.2 m/s)2/(6.37x106 m)
= 685.7 nts.

If we wanted to define a gravitational constant gequ that, when
multiplied by your mass gives the amount of force the earth must exert on
you when you stand at the equator (that is exactly how the g value you have
come to know and love was originally determined), gequ will be:

Nw c.f. = mgw c.f.
    ⇒     gw c.f  = Nw c.f./m

          = (685.7 nts) / (70 kg)
          = 9.796 m/s2.
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c.)  Defining the distance between the earth and moon to be r and using
N.S.L., we get:

  ∑ Fc :

       -G memm/r2 = -mm ac
             = -mm v2/r

      ⇒    v = (Gme/r)1/2 (Equ. A)

      = [(6.67x10-11 m3/kg.s2) (5.98x1024 kg) / (3.84x108 m)]1/2

      = 1019 m/s.

Interesting Note:  Just as two objects will accelerate at the same rate
(assuming neither gets close to its terminal velocity) under the influence of
gravity, the velocity required to pull a mass in a given-radius circular path does
NOT depend upon the mass of the object being so motivated.  This might not be
immediately obvious (just as the first statement in this NOTE wasn't obvious back
when you first ran into it), but it is supported by the math.  The moon is the mass
being centripetally accelerated, and the mm terms do cancel out in our velocity
equation as derived above.


